Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Sergei A. Kotlyar, ${ }^{\text {a }}$ Roman I.

 Zubatyuk, ${ }^{\text {b }}$ * Oleg V. Shishkin, ${ }^{\text {b }}$ Gennady N. Chuprin, ${ }^{\text {a }}$ Andrey V. Kiriyak ${ }^{\text {a }}$ and Gerbert L. Kamalov ${ }^{\text {a }}$${ }^{\text {a }}$ A. V. Bogatsky Physico-Chemical Institute, National Academy of Sciences of Ukraine, 86 Lustdorfskaya Doroga, Odessa 65080, Ukraine, and ${ }^{\mathbf{b}}$ Institute for Scintillation Materials, STC 'Institute for Single Crystals', National Academy of Sciences of Ukraine, 60 Lenina Avenue, Kharkov 61001, Ukraine

Correspondence e-mail:
roman@xray.isc.kharkov.com

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.009 \AA$
Disorder in main residue
R factor $=0.068$
$w R$ factor $=0.197$
Data-to-parameter ratio $=13.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

([1.5]Dibenzo-18-crown-6)potassium chlorochromate

The title compound, (6,7,9,10,12,13,15,16-octahydrodibenzo-[b,e]-1,4,7,10,13,16-hexaoxacyclooctadecine)potassium chlorochromate, $\left[\mathrm{K}\left(\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{6}\right)\right]\left[\mathrm{CrClO}_{3}\right]$, is the complex formed by a K^{+}cation with one crown ether molecule and a chlorochromate anion. The cation is displaced from the mean plane of the ether O atoms by 0.849 (2) \AA towards the anion. It forms coordination bonds with all of the O atoms of the crown ether, as well as with the disordered O and Cl atoms of the anion.

Comment

There are three possible isomers of dibenzo-18-crown-6, namely [3.3]dibenzo-18-crown-6, (I), [2.4]dibenzo-18-crown-6, (II) and [1.5]dibenzo-18-crown-6, (III), which differ in terms of the positions of the aromatic rings. With regard to the ability of these crown ether (CE) molecules to form complexes with cations and neutral guest molecules, the [1.5]dibenzo-18-crown-6 molecule, (III), is, in our opinion, the most interesting. In particular, it has the shortest distance between benzene rings of only one bridging O atom. Restricted rotation around the $\mathrm{C}_{\mathrm{ar}}-\mathrm{O}$ bonds may result in selectivity in complex formation, which was recently confirmed by us (Kotlyar, Fonari et al., 2005; Ganin et al., 2005).
 Accepted 21 September 2005 Online 30 September 2005

Figure 1

A view of (IV), with displacement ellipsoids drawn at the 50% probability level. The minor disorder component of the anion is indicated by primed atoms.

The CE molecule in (IV) possesses the crown-like conformation, which is somewhat strained due to the presence of the two benzene rings. The $\mathrm{C} 1-\mathrm{O} 1$ and $\mathrm{C} 20-\mathrm{O} 1$ bonds are geometrically non-equivalent. The $\mathrm{C} 20-\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$ torsion angle of $3.9(7)^{\circ}$ implies the existence of electronic conjugation between the lone pairs of the O atom and the π system of the $\mathrm{C} 1-\mathrm{C} 6$ ring. The $\mathrm{C} 1-\mathrm{O} 1$ bond has a syn-clinal conformation with respect to the $\mathrm{C} 15-\mathrm{C} 20$ benzene ring [$\mathrm{C} 1-\mathrm{O} 1-$ $\left.\mathrm{C} 20-\mathrm{C} 19=72.1(6)^{\circ}\right]$, so the conjugation of this ring with the lone pairs of atom O1 is disrupted. Nevertheless, the $\mathrm{C} 1-\mathrm{O} 1$ and $\mathrm{C} 20-\mathrm{O} 1$ bond lengths are practically the same (Table 1). This could be caused by elongation of the $\mathrm{C} 1-\mathrm{O} 1$ bond due to the presence of a short $\mathrm{C} 20 \cdots \mathrm{H} 2$ intramolecular contact of $2.54 \AA$ (van der Waals radius sum for C and $\mathrm{H}=2.86 \AA$; Zefirov \& Zorky, 1989). The C2-C1-C20-C19 pseudotorsion angle in (IV) of 62.3 (5) ${ }^{\circ}$ is somewhat smaller than that in the free [1.5]dibenzo-18-crown-6 ligand (89.3 ${ }^{\circ}$; Kotlyar, Fonari et al., 2005). Based on this fact, we can suggest that the complexation probably leads to some flattening of the $\mathrm{Ar}-\mathrm{O}-$ Ar fragment.

The K^{+}cation is coordinated by all six O atoms of the CE molecule. The $\mathrm{K}-\mathrm{O}$ (ether) bond distances are within the range 2.744 (4)-2.975 (4) \AA (Table 1). The bridging O atom between the benzene rings, O1, lies opposite atom O4. The cation is displaced from the mean plane of the CE O atoms by 0.849 (2) \AA toward the anion, due to the formation of bonds with the anion.

The anion is disordered over two positions [occupancy ratio 0.729 (8):0.271 (8)] as a result of rotation around the bisector of the $\mathrm{O} 7-\mathrm{Cr} 1-\mathrm{O} 9$ bond angle. The minor disorder component of Cl 1 (marked $\mathrm{Cl1}^{\prime}$ in Fig. 1) lies near atom O8, and consequently atom O^{\prime} lies near atom Cl 1 . In contrast with previously reported structures of CE complexes with potassium chlorochromate (Kotlyar, Zubatyuk, Shishkin et al., 2004; Kotlyar, Zubatyuk, Zhygalko et al., 2004; Kotlyar, Zubatyuk et al., 2005), the Cl atom of the anion also participates in the formation of complex (IV).

Experimental

To a stirred solution of potassium chlorochromate (241 mg , $1.38 \mathrm{mmol})$ in dry ethyl acetate $(10 \mathrm{ml})$ at room temperature was added a solution of [1.5]dibenzo-18-crown-6 ($497 \mathrm{mg}, 1.38 \mathrm{mmol}$) in dry ethyl acetate (7 ml). The reaction mixture was stirred for 10 min and the yellow-orange precipitate which formed was filtered off, washed with cold ethyl acetate $(2 \mathrm{ml})$ and diethyl ether $(2 \mathrm{ml})$, dried at reduced pressure and heated at 313 K to constant weight (yield $65 \%, 480 \mathrm{mg}$). Transparent yellow crystals of (IV), suitable for X-ray investigation [m.p. 417-420 K (decomposition)], were obtained by evaporation of a dichloromethane solution. Analysis, calculated for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{9} \mathrm{ClCrK}: \mathrm{C} 44.90$, $\mathrm{H} 4.52, \mathrm{Cl} 6.63, \mathrm{Cr} 9.72 \%$; found: C 44.99, H $4.38, \mathrm{Cl} 6.56, \mathrm{Cr} 9.60 \%$. The crystals are soluble in dichloromethane, dimethyl sulfoxide, dimethyl formamide and acetone, and sparingly soluble in chloroform.

Crystal data

$\left[\mathrm{K}\left(\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{6}\right)\right]\left[\mathrm{CrClO}_{3}\right]$

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.490 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 24 \\
& \quad \text { reflections } \\
& \theta=12-16^{\circ} \\
& \mu=0.81 \mathrm{~mm}^{-1} \\
& T=295(2) \mathrm{K} \\
& \text { Block, yellow } \\
& 0.30 \times 0.20 \times 0.20 \mathrm{~mm}
\end{aligned}
$$

$M_{r}=534.94$
Triclinic, $P \overline{1}$
$a=10.139$ (3) £
$b=10.649$ (4) \AA
$c=12.138(3) \AA$
$\alpha=95.34(3)^{\circ}$
$\beta=94.11$ (2) ${ }^{\circ}$
$\gamma=113.05(2)^{\circ}$
$V=1192.3(7) \AA^{3}$

Data collection

Siemens $P 3 / P C$ diffractometer $\omega / 2 \theta$ scans
Absorption correction: none 4317 measured reflections 4067 independent reflections 2703 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.069$

$$
\begin{aligned}
& \theta_{\max }=25.1^{\circ} \\
& h=0 \rightarrow 12 \\
& k=-12 \rightarrow 11 \\
& l=-14 \rightarrow 14 \\
& 2 \text { standard reflections } \\
& \quad \text { every } 98 \text { reflections } \\
& \quad \text { intensity decay: } 3 \%
\end{aligned}
$$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.1033 P)^{2}\right. \\
& \quad+1.1342 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.003 \\
& \Delta \rho_{\max }=0.76 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }= \\
& \hline
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.068$
$w R\left(F^{2}\right)=0.197$
$S=1.04$
4067 reflections
296 parameters
H-atom parameters constrained

Table 1
Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$.

K1-O1	$2.753(3)$	$\mathrm{K} 1-\mathrm{O} 8$	$2.922(15)$
$\mathrm{K} 1-\mathrm{O} 2$	$2.899(3)$	$\mathrm{K} 1-\mathrm{O} 9$	$2.784(5)$
$\mathrm{K} 1-\mathrm{O} 3$	$2.810(3)$	$\mathrm{K} 1-\mathrm{Cl} 1^{\prime}$	$3.197(14)$
$\mathrm{K} 1-\mathrm{O} 4$	$2.744(4)$	$\mathrm{C} 1-\mathrm{O} 1$	$1.385(5)$
$\mathrm{K} 1-\mathrm{O} 5$	$2.791(4)$	$\mathrm{C} 20-\mathrm{O} 1$	$1.388(5)$
$\mathrm{K} 1-\mathrm{O} 6$	$2.975(4)$		
C1-O1-C20	$118.6(4)$	$\mathrm{C} 10-\mathrm{O} 4-\mathrm{C} 11$	$116.9(5)$
$\mathrm{C} 6-\mathrm{O} 2-\mathrm{C} 7$	$116.5(4)$	$\mathrm{C} 13-\mathrm{O} 5-\mathrm{C} 12$	$114.7(5)$
$\mathrm{C} 9-\mathrm{O} 3-\mathrm{C} 8$	$113.0(4)$	$\mathrm{C} 15-\mathrm{O} 6-\mathrm{C} 14$	$116.9(4)$
$\mathrm{C} 20-\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	$3.9(7)$	$\mathrm{O} 5-\mathrm{C} 13-\mathrm{C} 14-\mathrm{O} 6$	$61.6(7)$
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{C} 20-\mathrm{C} 19$	$72.1(6)$	$\mathrm{C} 6-\mathrm{O} 2-\mathrm{C} 7-\mathrm{C} 8$	$-65.5(6)$
$\mathrm{O} 2-\mathrm{C} 7-\mathrm{C} 8-\mathrm{O} 3$	$-63.3(5)$	$\mathrm{C} 15-\mathrm{O} 6-\mathrm{C} 14-\mathrm{C} 13$	$-176.9(4)$
$\mathrm{O} 3-\mathrm{C} 9-\mathrm{C} 10-\mathrm{O} 4$	$-174.6(4)$	$\mathrm{C} 7-\mathrm{O} 2-\mathrm{C} 6-\mathrm{C} 1$	$-174.6(4)$
$\mathrm{O} 4-\mathrm{C} 11-\mathrm{C} 12-\mathrm{O} 5$	$64.3(7)$	$\mathrm{C} 14-\mathrm{O} 6-\mathrm{C} 15-\mathrm{C} 20$	$-167.8(4)$

The disordered atoms which occupy neighbouring sites (O^{\prime} and Cl 1 , and O 8 and $\mathrm{Cl1} 1^{\prime}$) were constrained to have the same $U^{i j}$

metal-organic papers

components and their site occupancies were constrained to sum to unity. The $\mathrm{Cr} 1-\mathrm{O} 8$ and $\mathrm{Cr} 1-\mathrm{O} 8^{\prime}$ bond lengths were restrained to 1.59 (1) Å. All H atoms were placed in calculated positions and included in the refinement in the riding-model approximation, with $\mathrm{C}-\mathrm{H}$ distances of 0.97 and $0.98 \AA$ and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: P3/PC (Siemens, 1989); cell refinement: P3/PC; data reduction: XDISK (Siemens, 1991); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

References

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Ganin, E., Fonari, M., Simonov, Yu., Bocelli, G., Basok, S., Tkachuk, V., Kotlyar, S. \& Kamalov, G. (2005). J. Incl. Phenom. 52, 63-74.
Kotlyar, S., Fonari, M., Simonov, Yu., Bocelli, G., Shishkin, O., Shishkina, S., Tkachuk, V., Grygorash, R. \& Kamalov, G. (2005). J. Incl. Phenom. 52, 7584.

Kotlyar, S., Zubatyuk, R., Shishkin, O., Chuprin, G., Kiriyak A. \& Kamalov, G. (2004). Acta Cryst. E60, m1015-m1016.

Kotlyar, S., Zubatyuk, R., Shishkin, O., Chuprin, G., Kiriyak, A. \& Kamalov, G. (2005). Acta Cryst. E61, m293-m295

Kotlyar, S., Zubatyuk, R., Zhygalko, M., Shishkin, O., Chuprin, G., Kiriyak, A. \& Kamalov, G. (2004). Acta Cryst. E60, m1847-m1848.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Siemens (1989). P3/PC Diffractometer Program. Version 3.13. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Siemens (1991). XDISK. Version 4.20.2PC. Siemens Analytical X-ray Instruments, Inc., Madison, Wisconsin, USA.
Zefirov, Yu. V. \& Zorky, P. M. (1989). Usp. Khim. (Russ. Chem. Rev.), 58, 713746. (In Russian.)

